4.8 Article

Preserving nanoscale features in polymers during laser induced graphene formation using sequential infiltration synthesis

Journal

NATURE COMMUNICATIONS
Volume 11, Issue 1, Pages -

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/s41467-020-17259-5

Keywords

-

Funding

  1. National Science Foundation [1541959]
  2. National Science Foundation Graduate Research Fellowship Program [DGE-1656518]

Ask authors/readers for more resources

Direct lasing of polymeric membranes to form laser induced graphene (LIG) offers a scalable and potentially cheaper alternative for the fabrication of electrically conductive membranes. However, the high temperatures induced during lasing can deform the substrate polymer, altering existing micro- and nanosized features that are crucial for a membrane's performance. Here, we demonstrate how sequential infiltration synthesis (SIS) of alumina, a simple solvent-free process, stabilizes polyethersulfone (PES) membranes against deformation above the polymers' glass transition temperature, enabling the formation of LIG without any changes to the membrane's underlying pore structure. These membranes are shown to have comparable sheet resistance to carbon-nanotube-composite membranes. They are electrochemically stable and maintain their permeability after lasing, demonstrating their competitive performance as electrically conductive membranes. These results demonstrate the immense versatility of SIS for modifying materials when combined with laser induced graphitization for a variety of applications. High temperatures induced during lasing can deform the substrate polymer used for fabrication of electrically conductive membranes. Here, the authors show that sequential infiltration synthesis of alumina stabilizes polyethersulfone (PES) membranes against deformation above the polymers' glass transition temperature.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available