4.8 Article

Dicer-like 5 deficiency confers temperature-sensitive male sterility in maize

Journal

NATURE COMMUNICATIONS
Volume 11, Issue 1, Pages -

Publisher

NATURE PORTFOLIO
DOI: 10.1038/s41467-020-16634-6

Keywords

-

Funding

  1. U.S. National Science Foundation Plant Genome Research Program (NSF-PGRP) [1649424, 1754097]
  2. Division Of Integrative Organismal Systems
  3. Direct For Biological Sciences [1754097] Funding Source: National Science Foundation

Ask authors/readers for more resources

Small RNAs play important roles during plant development by regulating transcript levels of target mRNAs, maintaining genome integrity, and reinforcing DNA methylation. Dicer-like 5 (Dcl5) is proposed to be responsible for precise slicing in many monocots to generate diverse 24-nt phased, secondary small interfering RNAs (phasiRNAs), which are exceptionally abundant in meiotic anthers of diverse flowering plants. The importance and functions of these phasiRNAs remain unclear. Here, we characterized several mutants of dcl5, including alleles generated by the clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 system and a transposon-disrupted allele. We report that dcl5 mutants have few or no 24-nt phasiRNAs, develop short anthers with defective tapetal cells, and exhibit temperature-sensitive male fertility. We propose that DCL5 and 24-nt phasiRNAs are critical for fertility under growth regimes for optimal yield. Small RNAs act to regulate gene or transposon activity during plant development. Here, the authors show that maize Dicer-like 5 is required for 24-nt phased, secondary small interfering RNA production in anthers and that dicer-like 5 mutants show abnormal tapetal development and temperature-sensitive sterility.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available