4.8 Article

Evaluation of water quality in the South-to-North Water Diversion Project of China using the water quality index (WQI) method

Journal

WATER RESEARCH
Volume 178, Issue -, Pages -

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.watres.2020.115781

Keywords

Water quality index; Water quality assessment; Parameters selection; The south-to-north water diversion project of China; Stepwise multiple linear regression

Funding

  1. China National Critical Project for Science and Technology on Water Pollution Prevention and Control [2017ZX07108-001]
  2. National Natural Science Foundation of China [51439006]
  3. Wuhan University Postgraduate Visiting Study Grant Project

Ask authors/readers for more resources

The world's longest trans-basin water diversion project, the Middle-Route (MR) of the South-to-North Water Diversion Project of China (SNWDPC), has officially been in operation for over 5 years since December 2014. Its water quality status has always attracted special attention because it is related to the health and safety of more than 58 million people and the integrity of an ecosystem covering more than 155,000 km(2). This study presented and analysed the spatio-temporal variations and trends of 16 water quality parameters, including pH, water temperature (WT), dissolved oxygen (DO), permanganate index (PI), five-day biochemical oxygen demand (BOD5), fecal coliform (F. coli), total phosphorus (TP), total nitrogen (TN), ammonia nitrogen (NH3-N), sulphate (SO4-), fluoride (F-), mercury (Hg), arsenic (As), selenium (Se), copper (Cu), and zinc (Zn), which were determined monthly from samples collected at 27 water quality monitoring stations in the MR of the SNWDPC from March 2016 to February 2019. The water quality index (WQI) was used to evaluate the seasonal and spatial water quality changes during the monitoring period, and a new WQI(min) model consisting of five crucial parameters, i.e., TP, F. coli, Hg, WT, and DO, was built by using stepwise multiple linear regression analysis. The results demonstrated that the water quality status of the MR of the SNWDPC has been steadily maintained at an excellent level during the monitoring period, with an overall average WQI(min) value of 90.39 and twelve seasonal mean WQI values ranging from 87.67 to 91.82. The proposed WQI(min) model that uses the selected five key parameters and the weights of those parameters has exhibited excellent performance in the water quality assessment of the project, with the coefficient of determination (R-2), Root Mean Square Error (RMSE), and Percentage Error (PE) values of 0.901, 2.21, 1.93%, respectively, showing that the proposed WQI(min) model is a useful and efficient tool to evaluate and manage the water quality. For the management department, the risk sources near certain stations with abnormally high values should be carefully inspected and strictly managed to maintain excellent water quality. The potential risks of algae proliferation in this project should be of concern in future research. (C) 2020 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available