4.8 Article

Do environmental concentrations of zinc oxide nanoparticle pose ecotoxicological risk to aquatic fungi associated with leaf litter decomposition?

Journal

WATER RESEARCH
Volume 178, Issue -, Pages -

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.watres.2020.115840

Keywords

Environmental concentration; ZnO nanoparticles; Fungal biomass; Enzyme activity; Fungal community structure

Funding

  1. National Natural Science Foundation of China [31500377]
  2. Science and Technology Project of Henan Province, China [182102310796]

Ask authors/readers for more resources

Ecotoxicological risk of ZnO nanoparticles at environmental levels is a key knowledge gap for predicting how freshwater ecosystems will respond to nanoparticle pollution. A microcosm experiment was conducted to explore the chronic effects of ZnO nanoparticle at environmental concentrations (30, 300, 3000 ng L-1) on aquatic fungi associated with the decomposing process of poplar leaf litter (45 days). ZnO nanoparticles led to 9-33% increases in fungal biomass after acute exposure (5 days), but 33-50% decreases after chronic exposure (45 days), indicating that the hormetic effect of ZnO nanoparticles at the environmental level may occur during acute exposure. Besides, ZnO nanoparticles had negative effects on microbial enzyme activity, especially on day 10, when the activities of N-acetylglucosaminidase, glycine-aminopeptidase, aryl-sulfatase, polyphenol oxidase, and peroxidase were significantly inhibited. After chronic exposure, the fungal community structure was significantly impacted by ZnO nanoparticles at 300 ng L-1 due to the reduced proportion of Anguillospora, which eventually caused a significant decrease in litter decomposition rate. Therefore, ZnO nanoparticles may pose ecotoxicological effects on aquatic fungi even at a very low concentration and eventually negatively affect freshwater functioning. (C) 2020 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available