4.7 Article

A comprehensive evaluation of the treatment of lead in MSWI fly ash by the combined cement solidification and phosphate stabilization process

Journal

WASTE MANAGEMENT
Volume 114, Issue -, Pages 107-114

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.wasman.2020.06.041

Keywords

Heavy metals; Solidification; Stabilization; Coefficient treatment; Response surface methodology

Funding

  1. Cultivation Program for the Excellent Doctoral Dissertation of Southwest Jiaotong University [D-YB201907]

Ask authors/readers for more resources

Fly ash is a hazardous material that is produced from municipal solid waste incineration. It contains heavy metals and should be properly treated to meet landfill entry requirements. In this study, under the precondition that the leachable concentration of lead (Pb) exceeded the limit value for landfill disposal, the effects of cement solidification, chemical stabilization, and their combination on the leachable Pb concentration and the chemical state of Pb were systematically investigated. In addition, the reaction conditions were optimized by response surface methodology (RSM) in terms of leachable Pb concentration, volume change ratio, and treatment cost. The results indicated that the leachable Pb concentration decreased at lower cement or sodium dihydrogen phosphate (NaH2PO4) dosages in cement solidification or NaH2PO4 stabilization, and the liquid-to-solid ratio had a significant influence on cement solidification. The leachable Pb concentration met the limit value for landfill disposal in the individual processes with 20% cement or 5% NaH2PO4, and in the combined process with 10% cement + 2% NaH2PO4. The combined process achieved the best treatment efficiency by enabling Pb to transform to a stable residual state. According to the RSM, a combined cement content of 11.64%, NaH2PO4 content of 2.79%, and liquid-to-solid ratio of 0.48 were the optimal parameters, resulting in substantial decreases in the volume change ratio and treatment costs, while satisfying the preconditions for landfill disposal. In conclusion, the combined process can reduce the pollution risk to the environment, and is an efficient and cost-effective pretreatment method for incinerator fly ash. (C) 2020 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available