4.6 Review

Regulation and Consequences of cGAS Activation by Self-DNA

Journal

TRENDS IN CELL BIOLOGY
Volume 30, Issue 8, Pages 594-605

Publisher

CELL PRESS
DOI: 10.1016/j.tcb.2020.05.006

Keywords

-

Categories

Funding

  1. National Institutes of Health (NIH) [R35 GM132111]

Ask authors/readers for more resources

Cyclic GMP-AMP (cGAMP) synthase (cGAS) is a major responder to the pathogenic DNA of viruses and bacteria. Upon DNA binding, cGAS becomes enzymatically active to generate the second messenger cGAMP, leading to activation of inflammatory genes, type I interferon production, autophagy, and cell death. Following genotoxic stress, cGAS can also respond to endogenous DNA, deriving from mitochondria, endogenous retroelements, and chromosomes to affect cellular signaling, secretion, and cell fate decisions. However, under unperturbed conditions, signaling from self-DNA is largely, but not completely, inhibited. Here we review how endogenous DNA is exposed to cGAS, how signaling is attenuated but activated under pathological conditions, and how low-level signaling under unperturbed conditions might prime antipathogenic responses.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available