4.3 Article

The protective effects of human umbilical cord mesenchymal stem cell-derived extracellular vesicles on cisplatin-damaged granulosa cells

Journal

TAIWANESE JOURNAL OF OBSTETRICS & GYNECOLOGY
Volume 59, Issue 4, Pages 527-533

Publisher

ELSEVIER TAIWAN
DOI: 10.1016/j.tjog.2020.05.010

Keywords

Extracellular vesicles; Apoptosis; Granulosa cells; Chemotherapeutics; Mesenchymal stem cells

Funding

  1. Science and Technology Innovation Project of Nanjing Military Region [14ZX06, 11Z010]

Ask authors/readers for more resources

Objective: Long term exposure to gonadotoxic chemotherapy is becoming a major cause of premature ovarian failure/insufficiency (POF/POI) with the increasing cancer incidence among young women. The present study was designed to investigate the protective effects of human cord mesenchymal stem cells (HUCMSCs)-derived extracellular vesicles (EVs) on cisplatin (CDDP)-damaged granulosa cells (GCs) in vitro. Materials and methods: EVs were obtained from supernatant of cultured HUCMSCs by ultracentrifugation method, purified by Sucrose density gradient centrifugation, and then were co-cultured with cisplatin-damaged GCs of 3-weeks female Sprague-Dawley (SD) rats. PKH26 labeled EVs could be observed in normal and CDDP-damaged GCs after 6 h co-culture. Results: The surviving GCs were significantly higher and apoptotic GCs were significantly lower in EVs + CDDP group compared with CDDP group. Meanwhile, the levels of E2 and StAR (the key gene related to synthesis of steroid hormone) were significantly higher in EVs + CDDP group compared with CDDP group. Furthermore, the mRNA expression of Caspase 3 was down-regulated significantly and the ratio of Bcl-2/Bax was up-regulated significantly in EVs + CDDP group. Moreover, the protective effect of EVs on CDDP-damaged GCs showed a dose-dependent effect. Conclusion: HUCMSCs-derived EVs could become incorporated to CDDP-damaged GCs, and increase the number of living cells, therefore playing important roles in promoting resistance to cisplatin-induced GCs apoptosis and restoring synthesis and secretion of steroid hormone in GCs. This study might provide a theoretical and experimental basis for use of mesenchymal stem cells (MSCs) derived EVs instead of MSCs as a cell-free therapeutic strategy for the patients with POI induced by chemotherapeutic agents. (C) 2020 Taiwan Association of Obstetrics & Gynecology. Publishing services by Elsevier B.V.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available