4.7 Article Proceedings Paper

Potential-controlled pulse electrochemical deposition of poly nanostructural two-dimensional molybdenum disulfide thin films as a counter electrode for dye-sensitized solar cells

Journal

SURFACE & COATINGS TECHNOLOGY
Volume 394, Issue -, Pages -

Publisher

ELSEVIER SCIENCE SA
DOI: 10.1016/j.surfcoat.2020.125855

Keywords

Pulse electrochemical deposition; Molybdenum disulfide; Poly nanostructure; Counter electrode; Dye-sensitized solar cells

Funding

  1. Ministry of Science and Technology of Taiwan [MOST 107-2221-E-131-007-MY3]

Ask authors/readers for more resources

In this study, the poly nanostructure of two-dimensional (2D) layer-nanostructure molybdenum disulfide (MoS2) thin films were synthesized onto the fluorine-doped tin oxide (FTO) glass substrate via the pulse-mode electrochemical deposition (Pulse ECD) method at room temperature and ambient pressure. The surface morphologies of the prepared thin films were examined using field-emission scanning electron microscope (FE-SEM). The chemical states and crystallinities of the prepared thin films were examined by X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, and high-resolution transmission electron microscopy (HR-TEM), respectively. Cyclic voltammetry (CV) measurements, electrochemical impedance spectroscopy (EIS), and Tafel-polarization measurements were performed to analyze the electrochemical properties and catalytic activities of the thin films for redox reactions. According to the HR-TEM results, it was observed that the poly nanostructural 2D MoS2 owning the short-range-order nanostructure offered the numerous edge planes to provide plenty active sites for an efficient counter electrode (CE) of the dye-sensitized solar cells (DSSCs). In combination with a dye-sensitized TiO2 working electrode and an iodine-based electrolyte, the DSSC assembled with the poly nanostructural 2D MoS2 CE showed a photovoltaic conversion efficiency of 6.08% under the illumination of AM 1.5 (100 mWcm(-2)), which was comparable to that with Pt CE (6.43%). Our study demonstrated that the room-temperature Pulse ECD method displayed a facile and economical process to synthesize the low-cost 2D MoS2 CE for the cost-effective DSSCs.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available