4.7 Article

Efficient reliability-based robust design optimization of structures under extreme wind in dual response surface framework

Journal

STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION
Volume 62, Issue 5, Pages 2711-2730

Publisher

SPRINGER
DOI: 10.1007/s00158-020-02606-3

Keywords

Reliability-based robust design optimization; Extreme wind load; Dual response surface method; Moving least squares method; Parameter uncertainty

Funding

  1. Council of Scientific and Industrial Research (CSIR) [22(0779)/18/EMR-II]

Ask authors/readers for more resources

This paper deals with an efficient reliability-based robust design optimization (RBRDO) of structures under extreme wind excitation. To solve such problems in the direct Monte Carlo simulation (MCS) framework, extensive computational time is required. To circumvent this, a new CDF-based RBRDO approach is proposed using the dual response surface method (RSM) framework. In the proposed approach, once the response surfaces are obtained by the dual RSM, the direct MCS can be fully avoided during optimization. Thereby, the approach evades several repetitive executions of finite element analyses code inside the optimization loop. Generally, RSM uses least squares method (LSM) which is reported to be a major source of error in few recent studies. Thus, the proposed approach utilizes the adaptive nature of moving least squares method (MLSM) for construction of response surfaces. The RBRDO is performed by using a two-criterion equivalent optimization problem, where the mean value of the cost of a structure and its standard deviation are optimized-ensuring constraint feasibility under parameter uncertainty. The dynamic response of structures necessary to define constraint functions is obtained using a random wind field model, which considers the effect of coherence and wind directionality. Two illustrative examples are presented to demonstrate the efficiency of the proposed RBRDO approach. When benchmarked through direct MCS results, the proposed MLSM-based RBRDO approach yields more accurate and robust solutions compared with that of the conventional LSM-based approach.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available