4.7 Article Proceedings Paper

Effect of bending test on the performance of CdTe solar cells on flexible ultra-thin glass produced by MOCVD

Journal

SOLAR ENERGY MATERIALS AND SOLAR CELLS
Volume 211, Issue -, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.solmat.2020.110552

Keywords

Metalorganic chemical vapor deposition; CdTe solar cells; Bending test; Thin films; Ultra-thin glass

Funding

  1. European Regional Development Fund (ERDF)
  2. Welsh European Funding Office (WEFO)
  3. EPSRC [EP/M028267/1, EP/N020863/1]
  4. ERDF through the Welsh Government [80708]
  5. Ser Solar project via Welsh Government
  6. EPSRC [EP/N020863/1, EP/K019597/1, EP/M028267/1] Funding Source: UKRI

Ask authors/readers for more resources

The development of lightweight and flexible solar modules is highly desirable for high specific power applications, building integrated photovoltaics, unmanned aerial vehicles and space. Flexible metallic and polyimide foils are frequently used, but in this work an alternative substrate with attractive properties, ultra-thin glass (UTG) has been employed. CdTe solar cells with average efficiency reaching 14.7% AM1.5G efficiency have been produced on UTG of 100 mu m thickness. Little has been reported on the effects on PV performance when flexed, so we investigated the effects on J-V parameters when the measurements were performed in 40 mm and 32 mm bend radius, and in a planar state before and after the bend curvature was applied. The flat J-V measurements after 32 mm bending test showed some improvement in efficiency, Voc and FF, with values higher than the first measurement in a planar state. In addition, two CdTe solar cells with identical initial performance were subjected to 32 mm static bending test for 168 hours, the results showed excellent uniformity and stability and no significant variation on J-V parameters was observed. External quantum efficiency and capacitance voltage measurements were performed and showed no significant change in spectral response or carrier concentration. Residual stress analysis showed that no additional strain was induced within the film after the bending test and that the overall strain was low. This has demonstrated the feasibility of using CdTe solar cells on UTG in new applications, when a curved module is required without compromising performance.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available