4.8 Article

Quasi-Heteroface Perovskite Solar Cells

Journal

SMALL
Volume 16, Issue 34, Pages -

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/smll.202002887

Keywords

band gap adjustment; carrier transport; evaporation; heteroface; perovskite solar cells

Funding

  1. National Key Research and Development Program of China [2018YFB1500103]
  2. National Natural Science Foundation of China [61674084, 11564027]
  3. Overseas Expertise Introduction Project for Discipline Innovation of Higher Education of China [B16027]
  4. Tianjin Science and Technology Project [18ZXJMTG00220]

Ask authors/readers for more resources

Perovskite solar cells (PSCs) have attracted unprecedented attention due to their rapidly rising photoelectric conversion efficiency (PCE). In order to further improve the PCE of PSCs, new possible optimization path needs to be found. Here, quasi-heteroface PSCs (QHF-PSCs) is designed by a double-layer perovskite film. Such brand new PSCs have good carrier separation capabilities, effectively suppress the nonradiative recombination of the PSCs, and thus greatly improve the open-circuit voltage and PCE. The root cause of the performance improvement is the benefit from the additional built-in electric field, which is confirmed by measuring the external quantum efficiency under applied electric field and Kelvin probe force microscope. Meanwhile, an intermediate band gap perovskite layer can be obtained simply by combining a wide band gap perovskite layer with a narrow band gap perovskite layer. Tunability of the band gap is obtained by varying the film thicknesses of the narrow and wide band gap layers. This phenomenon is quite different from traditional inorganic solar cells, whose band gap is determined only by the narrowest band gap layer. It is believed that these QHF-PSCs will be an effective strategy to further enhance PCE in PSCs and provide basis to further understand and develop the perovskite materials platform.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available