4.7 Article

Green immobilization of toxic metals using alkaline enhanced rice husk biochar: Effects of pyrolysis temperature and KOH concentration

Journal

SCIENCE OF THE TOTAL ENVIRONMENT
Volume 720, Issue -, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.scitotenv.2020.137584

Keywords

Engineered biochar; Alkaline activation; Metal stabilization; TOF-SIMS; Immobilization mechanism; Soil remediation

Funding

  1. National Key Research and Development Program of China [2018YFC1801300]

Ask authors/readers for more resources

Biochar is a green material that has been widely used in environmental applications for its capability to remove or immobilize contaminants in different environmental media (i.e. soil, water and air) and mitigate climate change. In this study, the feasibility of using KOH enhanced biochar for soil Cd and Pb stabilization was investigated, and the effects of pyrolysis temperature and alkaline concentrations for modification were explored. Field-emission scanning electron microscopy (FESEM), N-2 adsorption-desorption, and Fourier Transform Infrared Spectroscopy (FTIR) analyses were conducted to reveal the influence on biochar physiochemical properties. The immobilization performances were examined through Toxicity Characteristics Leaching Procedure (TCLP), and Response Surface Methodology (RSM) was adopted to visualize the results from leaching tests. The stabilization mechanisms of alkaline enhanced biochars were investigated using Time of Flight Secondary Ion Mass Spectroscopy (TOF-SIMS), Tessier sequential extraction method and X-ray diffraction (XRD) analyses. The results indicated that rice husk biochar pyrolyzed at a relatively low temperature (i.e., 300 degrees C) and activated by moderate alkaline concentrations (i.e., 1 Mor 3 M KOH) rendered optimum stabilization performance. KOH activation was a double-edged sword, with high alkaline concentrations destroying biochar's cell structures. Moreover, the integration of TOF-SIMS, XRD and sequential leaching method shed lights on the underlying mechanisms involved in metal stabilization. Surface complexation between toxic metals and oxygen-containing functional groups rather than liming or precipitation was proven to be the fundamental stabilization mechanism. (C) 2020 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available