4.4 Article

A hybrid deep clustering approach for robust cell type profiling using single-cell RNA-seq data

Journal

RNA
Volume 26, Issue 10, Pages 1303-1319

Publisher

COLD SPRING HARBOR LAB PRESS, PUBLICATIONS DEPT
DOI: 10.1261/rna.074427.119

Keywords

scRNA-seq; clustering; machine learning; single-cell; transcriptomics

Funding

  1. National Institutes of Health, National Library of Medicine [LM012772]
  2. National Science Foundation [1458267]

Ask authors/readers for more resources

Single-cell RNA sequencing (scRNA-seq) is a recent technology that enables fine-grained discovery of cellular subtypes and specific cell states. Analysis of scRNA-seq data routinely involves machine learning methods, such as feature learning, clustering, and classification, to assist in uncovering novel information from scRNA-seq data. However, current methods are not well suited to deal with the substantial amount of noise that is created by the experiments or the variation that occurs due to differences in the cells of the same type. To address this, we developed a new hybrid approach, deep unsupervised single-cell clustering (DUSC), which integrates feature generation based on a deep learning architecture by using a new technique to estimate the number of latent features, with a model-based clustering algorithm, to find a compact and informative representation of the single-cell transcriptomic data generating robust clusters. We also include a technique to estimate an efficient number of latent features in the deep learning model. Our method outperforms both classical and state-of-the-art feature learning and clustering methods, approaching the accuracy of supervised learning. We applied DUSC to a single-cell transcriptomics data set obtained from a triple-negative breast cancer tumor to identify potential cancer subclones accentuated by copy-number variation and investigate the role of clonal heterogeneity. Our method is freely available to the community and will hopefully facilitate our understanding of the cellular atlas of living organisms as well as provide the means to improve patient diagnostics and treatment.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available