4.5 Article

Physical Activity During Pregnancy Is Associated with Increased Placental FATP4 Protein Expression

Journal

REPRODUCTIVE SCIENCES
Volume 27, Issue 10, Pages 1909-1919

Publisher

SPRINGER HEIDELBERG
DOI: 10.1007/s43032-020-00210-w

Keywords

Physical activity; Placenta; Pregnancy; Nutrient transport; Trophoblast

Funding

  1. Canada Graduate Scholarships-Master's, from the Natural Sciences and Engineering Research Council of Canada (NSERC)
  2. Faculty of Health Sciences uOttawa/CHEO Doctoral Fellowship for the Advancement of Biological Perspectives for Exercise Interventions Across the Lifespan
  3. Ontario Graduate Scholarship
  4. Canadian Institutes of Health Research [MOP 142298]
  5. NSERC [RGPIN-2017-05457]

Ask authors/readers for more resources

Placental function is of utmost importance to ensure proper fetal development in utero. Among the placenta's many roles includes the passage of sufficient macronutrients, such as glucose, amino acids, and fatty acids, to the fetus. Macronutrients are carried from maternal circulation to the fetus across transporters within the placenta. The objective of this study was to examine the impact of (i) an acute bout of exercise and (ii) chronic exercise participation on placenta nutrient transporter expression and localization. To investigate the effect of acute exercise, pre- and post-exercise serum was collected from pregnant (n = 5) and non-pregnant (n = 5) women who underwent a moderate-intensity exercise session and used to treat BeWo cells. To assess chronic physical activity, we analyzed term placenta from women categorized as active (n = 10) versus non-active (n = 10). Protein expression and localization for the transporters GLUT1, SNAT1, and FATP4 were examined for both groups. GLUT1 expression in BeWo cells treated with serum from pregnant women was higher compared with that from non-pregnant, independent of exercise. FATP4 protein expression was elevated in the term placenta of active women. Immunohistochemistry analysis of term placenta illustrated increased staining of FATP4 in placental tissue from active women and differential staining pattern of GLUT1 depending on physical activity status. Chronic exercise during pregnancy increases the expression of placental FATP4 in vivo, suggesting greater metabolism and usage of fatty acids. Additionally, serum from pregnant women could contain factors that increase GLUT1 protein expression in vitro. BeWo cells treated with pre- and post-exercise serum from pregnant women resulted in greater GLUT1 expression compared with those treated with pre- and post-exercise serum from non-pregnant women. Physical activity appears to differentially impact key placental transporters involved in the transfer and availability of nutrients from mother to fetus. Future research ought to examine the mechanisms involved in regulating these changes and their impact on fetal growth and health.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available