4.7 Article

Effects of hydrogen addition on the laminar methanol-air flame under different initial temperatures

Journal

RENEWABLE ENERGY
Volume 154, Issue -, Pages 209-222

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.renene.2020.03.037

Keywords

Methanol; Hydrogen addition; Laminar flame; Initial temperature; Kinetics analysis

Funding

  1. National Key Research and Development Program of China [2017YFB0103402]
  2. Beijing Municipal Natural Science Foundation, China [3192030]
  3. State Key Laboratory of Engines, Tianjin University, China [K2018-03]

Ask authors/readers for more resources

Methanol has been regarded as a promising alternative fuel. However, the problem in cold start and the resulting high emissions consistently constrain the development of methanol engines. Meanwhile, blending hydrogen in methanol has the potential to alleviate the above problem. Effects of blending hydrogen on the laminar flames of methanol under changing initial temperatures was then investigated. The experiments were undertaken in a constant volume chamber. The chemical mechanism investigation was conducted using CHEMKIN. The hydrogen fraction increased from 0 to 0.8. The initial temperature changed from 350 K to 450 K. The results show that increasing the initial temperature and hydrogen component accelerate the flame propagation. For flames at 450 K and Phi = 1.2, when the hydrogen fraction increases from 0 to 0.8, the laminar flame speeds are 4.80, 4.85, 7.00, 9.27, 15.50 (m/s), respectively. Markstein length decreases and then increases with the increase in hydrogen fraction. For flames at 400 K and Phi = 1.0, when the hydrogen fraction increases from 0 to 0.8, the maximum mole fraction of H atom increases from 0.008 to 0.025 (a threefold increase). The rapidly accumulating hydrogen atoms promote the chain branching reaction (R5: O-2 +H=O + OH) and accelerate the combustion process. (C) 2020 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available