4.8 Article

Complete microviscosity maps of living plant cells and tissues with a toolbox of targeting mechanoprobes

Publisher

NATL ACAD SCIENCES
DOI: 10.1073/pnas.1921374117

Keywords

molecular rotors; microviscosity; FLIM; plant mechanobiology

Funding

  1. Netherlands Organization for Scientific Research through VIDI research program [723.016.001]
  2. Netherlands Organization for Scientific Research through ECHO research program [711.018.002]
  3. European Research Council Advanced Grant DIRNDL [833867]
  4. European Research Council (ERC) [833867] Funding Source: European Research Council (ERC)

Ask authors/readers for more resources

Mechanical patterns control a variety of biological processes in plants. The microviscosity of cellular structures effects the diffusion rate of molecules and organelles, thereby affecting processes such as metabolism and signaling. Spatial variations in local viscosity are also generated during fundamental events in the cell life cycle. While crucial to a complete understanding of plant mechanobiology, resolving subcellular microviscosity patterns in plants has remained an unsolved challenge. We present an imaging microviscosimetry toolbox of molecular rotors that yield complete microviscosity maps of cells and tissues, specifically targeting the cytosol, vacuole, plasma membrane, and wall of plant cells. These boron-dipyrromethene (BODIPY)-based molecular rotors are rigidochromic by means of coupling the rate of an intramolecular rotation, which depends on the mechanics of their direct surroundings, with their fluorescence lifetime. This enables the optical mapping of fluidity and porosity patterns in targeted cellular compartments. We show how apparent viscosity relates to cell function in the root, how the growth of cellular protrusions induces local tension, and how the cell wall is adapted to perform actuation surrounding leaf pores. These results pave the way to the noninvasive micromechanical mapping of complex tissues.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available