4.5 Article

Application of nano electrolyte in the electrochemical discharge machining process

Publisher

ELSEVIER SCIENCE INC
DOI: 10.1016/j.precisioneng.2020.03.010

Keywords

Electro-chemical discharge machining; Nano electrolyte; Hole depth; Entrance overcut; Current signal; Tool wear

Funding

  1. Iran National Science Foundation (INSF)

Ask authors/readers for more resources

As a nontraditional machining process, electrochemical discharge machining (ECDM) can apply to hard and brittle materials such as glass and ceramic. Improvement of process efficiency is an important topic that has been addressed in many investigations using various techniques such as magnetic field and ultrasonic vibrations. Nano particles are new and advanced materials that can be dispersed in a fluid to obtain a nano fluid with desirable specifications. This method can be implemented in the ECDM process by the application of the nano electrolyte. Nano electrolyte can present enhanced properties, in particular enhanced electrical and thermal conductivities which lead to more powerful discharges and greater material removal. In order to study the variation of discharge physics, consequent captures from discharges were taken. Besides using current signal diagrams, larger numbers of discharges were found using nano electrolytes. Results of hole depth showed that both Cu and Al2O3 nano electrolytes improved the hole depth as 21.1% and 18.7%, respectively. An undesirable effect of nano electrolyte was observed on the entrance overcut, which raised 8.3% and 10.7% using Cu and Al2O3 nano electrolytes, respectively, in comparison to the simple electrolyte. This drawback is negligible compared to the significant improvement of hole depth. SEM images of tool wear showed larger molten materials on the tool main edges by the application of nano electrolyte.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available