4.7 Article

In ovo supplementation of chitooligosaccharide and chlorella polysaccharide affects cecal microbial community, metabolic pathways, and fermentation metabolites in broiler chickens

Journal

POULTRY SCIENCE
Volume 99, Issue 10, Pages 4776-4785

Publisher

ELSEVIER
DOI: 10.1016/j.psj.2020.06.061

Keywords

in ovo feeding; prebiotics; intestinal microbiota; short-chain fatty acids; shotgun metagenomic sequencing

Funding

  1. Key Research and Development Project of Hainan Province [ZDYF2019150]
  2. USDA/NIFA-Multistate Fund

Ask authors/readers for more resources

The chitooligosaccharide (COS) and chlorella polysaccharide (CPS) have been used as feed supplements in the poultry industry for improving growth performance and immunity. However, the benefits of these prebiotics on the gut health of chickens when used in early nutrition are unknown. This study evaluated the effects of in ovo feeding of COS and CPS on the cecal microbiome, metabolic pathways, and fermentation metabolites of chickens. A total of 240 fertile eggs were divided into 6 groups (n 5 4; 10 eggs/replicate): 1) noinjection control, 2) normal saline control, 3) COS 5 mg, 4) COS 20 mg, 5) CPS 5 mg, and 6) CPS 20 mg injection. On day 12.5 of egg incubation, test substrate was injected into the amniotic sac of eggs in respective treatments. The hatched chicks were raised for 21 D under standard husbandry practices. On day 3 and 21, cecal digesta were collected to determine microbiota by shotgun metagenomic sequencing and short-chain fatty acids by gas chromatography. The cecal microbial composition was not different (P > 0.05) among the treatment groups on day 3 but was different (P < 0.05) on day 21. At the species level, the polysaccharide-utilizing bacteria including Lactobacillus johnsonii, Bacteroides coprocola, and Bacteroides salanitronis were higher in the COS group, whereas the relative abundance of some opportunistic pathogenic bacteria were lower than those in the CPS and control groups. At the functional level, the pathways of gluconeogenesis, L-isoleucine degradation, Lhistidine biosynthesis, and fatty acid biosynthesis were enriched in the COS group. In addition, propionic acid content was higher (P, 0.05) in the COS group. A network based on the correlation between the COS and other factors was constructed to illuminate the potential action mechanism of the COS in chicken early nutrition. In conclusion, in ovo inoculation of COS 5 mg showed positive effects on the cecal microbiota, metabolic pathways, and propionic acid, thus can be used as in ovo feeding to modulate the gut health of chickens.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available