4.3 Article

Enhanced laser wakefield acceleration using dual-color relativistic pulses

Journal

PLASMA PHYSICS AND CONTROLLED FUSION
Volume 62, Issue 9, Pages -

Publisher

IOP PUBLISHING LTD
DOI: 10.1088/1361-6587/aba481

Keywords

dual-color laser-plasma accelerator; laser wakefield acceleration; self-injection; ionization injection; PIC simulation

Funding

  1. National Basic Research Program of China [2013CBA01500]
  2. ELI-ALPS project - European Union [GINOP-2.3.6-15-2015-00001]
  3. European Regional Development Fund
  4. CAS [181231KYSB20170022]

Ask authors/readers for more resources

In a recent article by Liet al(2019Sci. Adv.5. eaav7940), experimental results from a dual-color laser wakefield acceleration (LWFA) were presented. In the present paper we, primarily, focus on detailed simulation studies of such a scheme in the self-injection and ionization injection regimes, respectively. The spatiotemporally-overlapped 30 fs dual-color laser pulses are at fundamental (FL, 800 nm, 'red') and second-harmonic (SH, 400 nm, 'blue') wavelengths. They are (a) co-propagating in an under-dense plasma, (b) relativistically intense (I> 10(18)W cm(-2)) and (c) having relatively high-energy (multi-Joule, loose focusing) and low-energy (sub-Joule, tight focusing), respectively. The basic concept of the scheme is the fact that the depletion length (L-pd) for a relativistic laser pulse in an under-dense plasma has an inverse quadratic dependence on the laser wavelength (proportional to 1/lambda(2)). Here, first by using a single FL 77 TW/30 fs laser pulse to drive a LWFA, an electron beam was accelerated up to similar to 400 MeV from a background plasma having an electron density of 10(19)cm(-3). Then, by driving the same LWFA by co-propagating 'blue' 7 TW/30 fs and 'red' 70 TW/30 fs laser pulses, the electron energy reached similar to 700-800 MeV (maximum). The simulations confirm that in such a dual-color LWFA scheme, the role of the SH laser pulse is post-accelerating electrons after a rapid depletion of the FL laser pulse in the plasma. Furthermore, the SH pulse assists the ionization-injection of the electrons which is an additional benefit of the dual-color LWFA scheme.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available