4.8 Article

Quantum Bubbles in Microgravity

Journal

PHYSICAL REVIEW LETTERS
Volume 125, Issue 1, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevLett.125.010402

Keywords

-

Ask authors/readers for more resources

The recent developments of microgravity experiments with ultracold atoms have produced a relevant boost in the study of shell-shaped ellipsoidal Bose-Einstein condensates. For realistic bubble-trap parameters, here we calculate the critical temperature of Bose-Einstein condensation, which, if compared to the one of the bare harmonic trap with the same frequencies, shows a strong reduction. We simulate the zero-temperature density distribution with the Gross-Pitaevskii equation, and we study the free expansion of the hollow condensate. While part of the atoms expands in the outward direction, the condensate self-interferes inside the bubble trap, filling the hole in experimentally observable times. For a mesoscopic number of particles in a strongly interacting regime, for which more refined approaches are needed, we employ quantum Monte Carlo simulations, proving that the nontrivial topology of a thin shell allows superfluidity. Our work constitutes a reliable benchmark for the forthcoming scientific investigations with bubble traps.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available