4.6 Article

Fatty acid bioconversion in harpacticoid copepods in a changing environment: a transcriptomic approach

Publisher

ROYAL SOC
DOI: 10.1098/rstb.2019.0645

Keywords

harpacticoid copepods; fatty acid metabolism; transcriptomics; global warming

Categories

Funding

  1. Ghent University [BOF16/STA/028, 01GA2617]
  2. EMBRC Belgium (FWO) [GOH3817N]
  3. PhD grant fundamental research of the Research Foundation Flanders-FWO [11E2320N]

Ask authors/readers for more resources

By 2100, global warming is predicted to significantly reduce the capacity of marine primary producers for long-chain polyunsaturated fatty acid (LC-PUFA) synthesis. Primary consumers such as harpacticoid copepods (Crustacea) might mitigate the resulting adverse effects on the food web by increased LC-PUFA bioconversion. Here, we present a high-quality de novo transcriptome assembly of the copepodPlatychelipus littoralis, exposed to changes in both temperature (+3 degrees C) and dietary LC-PUFA availability. Using this transcriptome, we detected multiple transcripts putatively coding for LC-PUFA-bioconverting front-end fatty acid (FA) desaturases and elongases, and performed phylogenetic analyses to identify their relationship with sequences of other (crustacean) taxa. While temperature affected the absolute FA concentrations in copepods, LC-PUFA levels remained unaltered even when copepods were fed an LC-PUFA-deficient diet. While this suggests plasticity of LC-PUFA bioconversion withinP. littoralis, none of the putative front-end desaturase or elongase transcripts was differentially expressed under the applied treatments. Nevertheless, the transcriptome presented here provides a sound basis for future ecophysiological research on harpacticoid copepods. This article is part of the theme issue 'The next horizons for lipids as 'trophic biomarkers': evidence and significance of consumer modification of dietary fatty acids'.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available