4.6 Article

Geometrical-lightguide-based head-mounted lightfield displays using polymer-dispersed liquid-crystal films

Journal

OPTICS EXPRESS
Volume 28, Issue 14, Pages 21165-21181

Publisher

OPTICAL SOC AMER
DOI: 10.1364/OE.397319

Keywords

-

Categories

Ask authors/readers for more resources

Integrating the promising waveguide or lightguide optical combiners to head-mounted lightfield display (LF-HMD) systems offers a great opportunity to achieve both a compact optical see-through capability required for augmented or mixed reality applications and true 3D scene with correct focus cues required for mitigating the well-known vergence-accommodation conflict. Due to the non-sequential ray propagation nature of these flat combiners and the ray construction nature of a lightfield display engine, however, adapting these two technologies to each other confronts several significant challenges. In this paper, we explore the feasibility of combining an integral-imaging-based lightfield display engine with a geometrical lightguide based on microstructure mirror arrays. The image artifacts and the key challenges in a lightguide-based LF-HMD system are systematically analyzed and are further quantified via a non-sequential ray tracing simulation. We further propose to utilize polymer-dispersed liquid-crystal (PDLC) films to address the inherent problems associated with a lightguide combiner such as increasing the viewing density and improving the image coupling uniformity. We finally demonstrate, to our best knowledge, the first lightguide-based LF-HMD system that takes the advantages of both the compact form factor of a lightguide combiner and the true 3D virtual image rendering capability of a lightfield display. (C) 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available