4.5 Review

Nutritional interventions during bed rest and spaceflight: prevention of muscle mass and strength loss, bone resorption, glucose intolerance, and cardiovascular problems

Journal

NUTRITION RESEARCH
Volume 82, Issue -, Pages 11-24

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.nutres.2020.07.001

Keywords

Protein; Leucine; Amino acids; beta-Hydroxy-beta-methylbutyrate; Glycemic index

Ask authors/readers for more resources

Bed rest is necessary for many medical conditions but also used as a ground-based model for space flight (along with head-down tilt to simulate fluid shifts in microgravity). The purpose of this review is to examine nutritional interventions during bed rest and spaceflight for prevention of muscle and strength loss, glucose intolerance, bone resorption, and cardiovascular problems. Increased dietary protein intake and supplementation with amino acids, beta-hydroxy-beta-methylbutyrate, or cofactors with antioxidant properties are effective for ameliorating bed rest-induced loss of muscle mass and strength. Previous literature involving bed rest with dietary protein/amino acid supplementation had mixed findings, likely due to differences in dosage. Although high protein intake in some studies prevents bed rest-induced muscle loss, it also increases bone resorption. High calcium intake and vitamin D supplementation are not beneficial for preventing bone degradation during bed rest or spaceflight. Very few studies investigated countermeasures to prevent glucose intolerance and cardiovascular risks during bed rest/spaceflight. Low-glycemic index diets might be beneficial for the prevention of bed rest-induced glucose intolerance and cardiovascular problems. The present evidence warrants additional studies on the exact threshold of protein/amino acid intake to prevent the loss of muscle mass and strength during bed rest/spaceflight specifically to maintain the beneficial effects of proteins on muscle mass and function without increasing bone resorption. Furthermore, it is suggested to study the effects of vitamin K supplementation on bone health during bed rest/spaceflight and determine the role of long-term low-glycemic index diets on glucose regulation and cardiovascular health during extended bed rest. (c) 2020 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available