4.8 Article

RNA aptamer capture of macromolecular complexes for mass spectrometry analysis

Journal

NUCLEIC ACIDS RESEARCH
Volume 48, Issue 15, Pages -

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/nar/gkaa542

Keywords

-

Funding

  1. National Institutes of Health [5R01GM025232]
  2. USDA Specialty Crops [2015-70016-23028]
  3. USDANational Institute of Food and Agriculture [2018-67011-28018]
  4. USDA ARS project [8062-22410-006-00-D]
  5. NIGMS [5R01GM025232]

Ask authors/readers for more resources

Specific genomic functions are dictated by macromolecular complexes (MCs) containing multiple proteins. Affinity purification of these complexes, often using antibodies, followed by mass spectrometry (MS) has revolutionized our ability to identify the composition of MCs. However, conventional immunoprecipitations suffer from contaminating antibody/serum-derived peptides that limit the sensitivity of detection for low-abundant interacting partners using MS. Here, we present AptA-MS (aptamer affinity-mass spectrometry), a robust strategy primarily using a specific, high-affinity RNA aptamer against Green Fluorescent Protein (GFP) to identify interactors of a GFP-tagged protein of interest by high-resolution MS. Utilizing this approach, we have identified the known molecular chaperones that interact with human Heat Shock Factor 1 (HSF1), and observed an increased association with several proteins upon heat shock, including translation elongation factors and histones. HSF1 is known to be regulated by multiple post-translational modifications (PTMs), and we observe both known and new sites of modifications on HSF1. We show that AptA-MS provides a dramatic target enrichment and detection sensitivity in evolutionarily diverse organisms and allows identification of PTMs without the need for modification-specific enrichments. In combination with the expanding libraries of GFP-tagged cell lines, this strategy offers a general, inexpensive, and high-resolution alternative to conventional approaches for studying MCs.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available