4.3 Article

DeepDicomSort: An Automatic Sorting Algorithm for Brain Magnetic Resonance Imaging Data

Journal

NEUROINFORMATICS
Volume 19, Issue 1, Pages 159-184

Publisher

HUMANA PRESS INC
DOI: 10.1007/s12021-020-09475-7

Keywords

DICOM; Brain imaging; Machine learning; Magnetic resonance imaging; BIDS; Data curation

Funding

  1. Dutch Cancer Society (KWF) [EMCR 2015-7859]
  2. ADNI (National Institutes of Health) [U01 AG024904]
  3. DOD ADNI (Department of Defense) [W81XWH-12-2-0012]
  4. National Institute on Aging
  5. National Institute of Biomedical Imaging and Bioengineering
  6. AbbVie
  7. Alzheimer's Drug Discovery Foundation
  8. Araclon Biotech
  9. BioClinica, Inc.
  10. Biogen
  11. Bristol-Myers Squibb Company
  12. CereSpir, Inc.
  13. Cogstate
  14. Eisai Inc.
  15. Elan Pharmaceuticals, Inc.
  16. Eli Lilly and Company
  17. EuroImmun
  18. F. Hoffmann-La Roche Ltd
  19. Genentech, Inc.
  20. Fujirebio
  21. GE Healthcare
  22. IXICO Ltd.
  23. Janssen Alzheimer Immunotherapy Research & Development, LLC.
  24. Johnson & Johnson Pharmaceutical Research & Development LLC.
  25. Lumosity
  26. Lundbeck
  27. Merck Co., Inc.
  28. Meso Scale Diagnostics, LLC.
  29. NeuroRx Research
  30. Neurotrack Technologies
  31. Novartis Pharmaceuticals Corporation
  32. Pfizer Inc.
  33. Piramal Imaging
  34. Servier
  35. Takeda Pharmaceutical Company
  36. Transition Therapeutics
  37. SURF Cooperative
  38. Canadian Institutes of Health Research

Ask authors/readers for more resources

By designing a convolutional neural network, the study successfully automated the recognition of different brain MRI scan types, achieving high accuracy in multiple experiments. The method can quickly and accurately organize datasets without manual verification, enhancing data shareability and integrity.
With the increasing size of datasets used in medical imaging research, the need for automated data curation is arising. One important data curation task is the structured organization of a dataset for preserving integrity and ensuring reusability. Therefore, we investigated whether this data organization step can be automated. To this end, we designed a convolutional neural network (CNN) that automatically recognizes eight different brain magnetic resonance imaging (MRI) scan types based on visual appearance. Thus, our method is unaffected by inconsistent or missing scan metadata. It can recognize pre-contrast T1-weighted (T1w),post-contrast T1-weighted (T1wC), T2-weighted (T2w), proton density-weighted (PDw) and derived maps (e.g. apparent diffusion coefficient and cerebral blood flow). In a first experiment,we used scans of subjects with brain tumors: 11065 scans of 719 subjects for training, and 2369 scans of 192 subjects for testing. The CNN achieved an overall accuracy of 98.7%. In a second experiment, we trained the CNN on all 13434 scans from the first experiment and tested it on 7227 scans of 1318 Alzheimer's subjects. Here, the CNN achieved an overall accuracy of 98.5%. In conclusion, our method can accurately predict scan type, and can quickly and automatically sort a brain MRI dataset virtually without the need for manual verification. In this way, our method can assist with properly organizing a dataset, which maximizes the shareability and integrity of the data.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available