4.7 Review

Inhibiting cellular uptake of mutant huntingtin using a monoclonal antibody: Implications for the treatment of Huntington's disease

Journal

NEUROBIOLOGY OF DISEASE
Volume 141, Issue -, Pages -

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.nbd.2020.104943

Keywords

Huntington's disease; Therapeutic antibody; Extracellular mutHTT; Cell-to-cell propagation

Categories

Funding

  1. Austrian Science promotion agency (FFG) [845557/851517/857707]
  2. Fonds de Recherche du Quebec en Sante (FRQS)
  3. Canadian Institutes of Health Research (CIHR)

Ask authors/readers for more resources

Huntington's disease (HD) is caused by a highly polymorphic CAG trinucleotide expansion in the gene encoding for the huntingtin protein (HTT). The resulting mutant huntingtin protein (mutHTT) is ubiquitously expressed but also exhibits the ability to propagate from cell-to-cell to disseminate pathology; a property which may serve as a new therapeutic focus. Accordingly, we set out to develop a monoclonal antibody (mAB) targeting a particularly exposed region close to the aa586 caspase-6 cleavage site of the HTT protein. This monoclonal antibody, designated C6-17, effectively binds mutHTT and is able to deplete the protein from cell culture super-natants. Using cell-based assays, we demonstrate that extracellular secretion of mutHTT into cell culture media and its subsequent uptake in recipient HeLa cells can be almost entirely blocked by mAB C6-17. Immunohistochemical stainings of post-mortem HD brain tissue confirmed the specificity of mAB C6-17 to human mutHTT aggregates. These findings demonstrate that mAB C6-17 not only successfully engages with its target, mutHTT, but also inhibits cell uptake suggesting that this antibody could interfere with the pathological processes of mutHTT spreading in vivo.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available