4.8 Article

The state of rock debris covering Earth's glaciers

Journal

NATURE GEOSCIENCE
Volume 13, Issue 9, Pages 621-+

Publisher

NATURE RESEARCH
DOI: 10.1038/s41561-020-0615-0

Keywords

-

Funding

  1. Northumbria University
  2. European Research Council (ERC) under the European Union [772751]
  3. European Research Council (ERC) [772751] Funding Source: European Research Council (ERC)

Ask authors/readers for more resources

Rock debris can accumulate on glacier surfaces and dramatically reduce glacier melt. The structure of a debris cover is unique to each glacier and sensitive to climate. Despite this, debris cover has been omitted from global glacier models and forecasts of their response to a changing climate. Fundamental to resolving these omissions is a global map of debris cover and an estimate of its future spatial evolution. Here we use Landsat imagery and a detailed correction to the Randolph Glacier Inventory to show that 7.3% of mountain glacier area is debris covered and over half of Earth's debris is concentrated in three regions: Alaska (38.6% of total debris-covered area), Southwest Asia (12.6%) and Greenland (12.0%). We use a set of new metrics, which include stage, the current position of a glacier on its trajectory towards reaching its spatial carrying capacity of debris cover, to quantify the state of glaciers. Debris cover is present on 44% of Earth's glaciers and prominent (>1.0 km(2)) on 15%. Of Earth's glaciers, 20% have a substantial percentage of debris cover for which the net stage is 36% and the bulk of individual glaciers have evolved beyond an optimal moraine configuration favourable for debris-cover expansion. Use of this dataset in global-scale models will enable improved estimates of melt over 10.6% of the global glacier domain. A global map of rock-debris cover on mountain glaciers shows its spatial distribution and evolution.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available