4.8 Article

Dual electrocatalysis enables enantioselective hydrocyanation of conjugated alkenes

Journal

NATURE CHEMISTRY
Volume 12, Issue 8, Pages -

Publisher

NATURE RESEARCH
DOI: 10.1038/s41557-020-0469-5

Keywords

-

Funding

  1. NIGMS [R01GM130928]
  2. Eli Lilly
  3. Cornell University
  4. NSF [CHE-1531632]
  5. National Energy Research Scientific Computing Center (NERSC), a US Department of Energy Office of Science User Facility [DE-AC02-05CH11231]

Ask authors/readers for more resources

Chiral nitriles and their derivatives are prevalent in pharmaceuticals and bioactive compounds. Enantioselective alkene hydrocyanation represents a convenient and efficient approach for synthesizing these molecules. However, a generally applicable method featuring a broad substrate scope and high functional group tolerance remains elusive. Here, we address this long-standing synthetic problem using dual electrocatalysis. Using this strategy, we leverage electrochemistry to seamlessly combine two canonical radical reactions-cobalt-mediated hydrogen-atom transfer and copper-promoted radical cyanation-to accomplish highly enantioselective hydrocyanation without the need for stoichiometric oxidants. We also harness electrochemistry's unique feature of precise potential control to optimize the chemoselectivity of challenging substrates. Computational analysis uncovers the origin of enantio-induction, for which the chiral catalyst imparts a combination of attractive and repulsive non-covalent interactions to direct the enantio-determining C-CN bond formation. This work demonstrates the power of electrochemistry in accessing new chemical space and providing solutions to pertinent challenges in synthetic chemistry.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available