4.8 Article

Detecting DNA and RNA and Differentiating Single-Nucleotide Variations via Field-Effect Transistors

Journal

NANO LETTERS
Volume 20, Issue 8, Pages 5982-5990

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.nanolett.0c01971

Keywords

DNA; RNA; mismatch; polymorphism; SNP; SNV; FET; sensing; biosensor

Funding

  1. National Institute on Drug Abuse [DA045550]
  2. Nantworks
  3. Department of Chemistry and Biochemistry at UCLA

Ask authors/readers for more resources

We detect short oligonucleotides and distinguish between sequences that differ by a single base, using label-free, electronic field-effect transistors (FETs). Our sensing platform utilizes ultrathin-film indium oxide FETs chemically functionalized with single-stranded DNA (ssDNA). The ssDNA-functionalized semiconducting channels in FETs detect fully complementary DNA sequences and differentiate these sequences from those having different types and locations of single base-pair mismatches. Changes in charge associated with surface-bound ssDNA vs double-stranded DNA (dsDNA) alter FET channel conductance to enable detection due to differences in DNA duplex stability. We illustrate the capability of ssDNA-FETs to detect complementary RNA sequences and to distinguish from RNA sequences with single nucleotide variations. The development and implementation of electronic biosensors that rapidly and sensitively detect and differentiate oligonucleotides present new opportunities in the fields of disease diagnostics and precision medicine.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available