4.8 Article

ModelTeller: Model Selection for Optimal Phylogenetic Reconstruction Using Machine Learning

Journal

MOLECULAR BIOLOGY AND EVOLUTION
Volume 37, Issue 11, Pages 3338-3352

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/molbev/msaa154

Keywords

model selection; phylogenetic reconstruction; simulations; nucleotide substitution models; machine learning; Random Forest for regression

Funding

  1. Rothschild Caesarea Foundation
  2. Edmond J. Safra Center for Bioinformatics at Tel-Aviv University
  3. Joan and Jaime Constantiner Institute for Molecular Genetics
  4. Society of Systematic Biology
  5. Dalia and Eli Hurvits Foundation LTD
  6. Ministry of Science, Technology & Space of Israel
  7. Israeli Science Foundation [802/16, 961/17]

Ask authors/readers for more resources

Statistical criteria have long been the standard for selecting the best model for phylogenetic reconstruction and downstream statistical inference. Although model selection is regarded as a fundamental step in phylogenetics, existing methods for this task consume computational resources for long processing time, they are not always feasible, and sometimes depend on preliminary assumptions which do not hold for sequence data. Moreover, although these methods are dedicated to revealing the processes that underlie the sequence data, they do not always produce the most accurate trees. Notably, phylogeny reconstruction consists of two related tasks, topology reconstruction and branch-length estimation. It was previously shown that in many cases the most complexmodel, GTR+I+G, leads to topologies that are as accurate as using existing model selection criteria, but overestimates branch lengths. Here, we present ModelTeller, a computational methodology for phylogenetic model selection, devised within the machine-learning framework, optimized to predict the most accurate nucleotide substitution model for branch-length estimation. We demonstrate that ModelTeller leads to more accurate branch-length inference than current model selection criteria on data sets simulated under realistic processes. ModelTeller relies on a readily implemented machine-learning model and thus the prediction according to features extracted from the sequence data results in a substantial decrease in running time compared with existing strategies. By harnessing the machine-learning framework, we distinguish between features that mostly contribute to branch-length optimization, concerning the extent of sequence divergence, and features that are related to estimates of the model parameters that are important for the selection made by current criteria.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available