4.5 Article

Reduction and analytic solutions of a variable-coefficient Korteweg-de Vries equation in a fluid, crystal or plasma

Journal

MODERN PHYSICS LETTERS B
Volume 34, Issue 26, Pages -

Publisher

WORLD SCIENTIFIC PUBL CO PTE LTD
DOI: 10.1142/S0217984920502875

Keywords

Variable-coefficient KdV equation; fluid; plasma; rational solution; periodic solution; mixed solution

Funding

  1. National Natural Science Foundation of China [11772017, 11272023, 11471050]
  2. Fund of State Key Laboratory of Information Photonics and Optical Communications (Beijing University of Posts and Telecommunications), China [IPOC: 2017ZZ05]
  3. Fundamental Research Funds for the Central Universities of China [2011BUPTYB02]

Ask authors/readers for more resources

In this paper, a variable-coefficient KdV equation in a fluid, plasma, anharmonic crystal, blood vessel, circulatory system, shallow-water tunnel, lake or relaxation inhomogeneous medium is discussed. We construct the reduction from the original equation to another variable-coefficient KdV equation, and then get the rational, periodic and mixed solutions of the original equation under certain constraint. For the original equation, we obtain that (i) the dispersive coefficient affects the solitonic background, velocity and amplitude; (ii) the perturbed coefficient affects the solitonic velocity, amplitude and background; (iii) the dissipative coefficient affects the solitonic background, and there are different mixed solutions under the same constraint with the dispersive, perturbed and dissipative coefficients changing.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available