4.6 Article

Systematic Quantification of Electron Transfer in a Bare Phospholipid Membrane Using Nitroxide-Labeled Stearic Acids: Distance Dependence, Kinetics, and Activation Parameters

Journal

LANGMUIR
Volume 36, Issue 35, Pages 10429-10437

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.langmuir.0c01585

Keywords

-

Funding

  1. Progetto di Eccellenza NEXUS, Italian Ministry of University and Research (MIUR)
  2. COST (EU Commission, action) [CM1201]
  3. NAWI Graz

Ask authors/readers for more resources

In this report, we present a method to characterize the kinetics of electron transfer across the bilayer of a unilamellar liposome composed of 1,2-dimyristoyl-sn-glycero-3-phosphocholine. The method utilizes synthetic phospholipids containing noninvasive nitroxide spin labels having the >N-O center dot moiety at well-defined distances from the outer surface of the liposome to serve as reporters for their local environment and, at the same time, permit measurement of the kinetics of electron transfer. We used 5-doxyl and 16-doxyl stearic acids. The paramagnetic >N-O center dot moiety is photo-oxidized to the corresponding diamagnetic oxoammonium cation by a ruthenium electron acceptor formed in the solution. Electron transfer is monitored by three independent spectroscopic methods: by both steady-state and time-resolved electron paramagnetic resonance and by optical spectroscopy. These techniques allowed us to differentiate between the electron transfer rates of nitroxides located in the outer leaflet of the phospholipid bilayer and of those located in the inner leaflet. Measurement of electron transfer rates as a function of temperature revealed a low-activation barrier (Delta G double dagger similar to 40 kJ/mol) that supports a tunneling mechanism.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available