4.8 Article

Highly Distorted Chiral Two-Dimensional Tin Iodide Perovskites for Spin Polarized Charge Transport

Journal

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
Volume 142, Issue 30, Pages 13030-13040

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/jacs.0c03899

Keywords

-

Funding

  1. Center for Hybrid Organic Inorganic Semiconductors for Energy (CHOISE) an Energy Frontier Research Center - Office of Basic Energy Sciences, Office of Science within the U.S. Department of Energy [AC36-08G028308]
  2. National Energy Research Scientific Computer Center (NERSC), a U.S. Department of Energy (DOE) Office of Science User Facility [DE-AC02-05CH11231]

Ask authors/readers for more resources

Incorporating chiral organic molecules into organic/inorganic hybrid 2D metal-halide perovskites results in a novel family of chiral hybrid semiconductors with unique spin-dependent properties. The embedded chiral organic moieties induce a chiroptical response from the inorganic metal-halide sublattice. However, the structural interplay between the chiral organic molecules and the inorganic sublattice, as well as their synergic effect on the resulting electronic band structure need to be explored in a broader material scope. Here we present three new layered tin iodide perovskites templated by chiral (R/S-)methylbenzylammonium (R/S-MBA), i.e., (R-/S-MBA)(2)SnI4, and their racemic phase (rac-MBA)(2)SnI4. These MBA(2)SnI(4) compounds exhibit the largest level of octahedral bond distortion compared to any other reported layered tin iodide perovskite. The incorporation of chiral MBA cations leads to circularly polarized absorption from the inorganic Sn-I sublattice, displaying chiroptical activity in the 300-500 nm wavelength range. The bandgap and chiroptical activity are modulated by alloying Sn with Pb, in the series of (MBA) Pb1-xSnxI4. Finally, we show that vertical charge transport through oriented (R-/S-MBA)(2)SnI4 thin films is highly spin-dependent, arising from a chiral-induced spin selectivity (CISS) effect. We demonstrate a spin-polarization in the current-voltage characteristics as high as 94%. Our work shows the tremendous potential of these chiral hybrid semiconductors for controlling both spin and charge degrees of freedom.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available