4.8 Article

Friction Anisotropy of MoS2: Effect of Tip-Sample Contact Quality

Journal

JOURNAL OF PHYSICAL CHEMISTRY LETTERS
Volume 11, Issue 16, Pages 6900-6906

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.jpclett.0c01617

Keywords

-

Funding

  1. National Science Foundation [ACI-1548562]

Ask authors/readers for more resources

Atomic-scale friction measured for a single asperity sliding on 2D materials depend on the direction of scanning relative to the material's crystal lattice. Here, nanoscale friction anisotropy of wrinkle-free bulk and monolayer MoS2 is characterized using atomic force microscopy and molecular dynamics simulations. Both techniques show 180 degrees periodicity (2-fold symmetry) of atomic-lattice stick-slip friction vs. the tip's scanning direction with respect to the MoS2 surface. The 60 degrees periodicity (6-fold symmetry) expected from the MoS2 surface's symmetry is only recovered in simulations where the sample is rotated, as opposed to the scanning direction changed. All observations are explained by the potential energy landscape of the tip-sample contact, in contrast with nanoscale topographic wrinkles that have been proposed previously as the source of anisotropy. These results demonstrate the importance of the tip-sample contact quality in determining the potential energy landscape and, in turn, friction at the nanoscale.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available