4.6 Article

Ab Initio Approach to Femtosecond Stimulated Raman Spectroscopy: Investigating Vibrational Modes Probed in Excited-State Relaxation of Quaterthiophenes

Journal

JOURNAL OF PHYSICAL CHEMISTRY A
Volume 124, Issue 31, Pages 6356-6362

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.jpca.0c06307

Keywords

-

Funding

  1. National Science Foundation [CHE-1665322, PAA-0003.49]

Ask authors/readers for more resources

Femtosecond stimulated Raman spectroscopy (FSRS) is an ultrafast pump-probe technique designed to elucidate excited-state molecular dynamics by means of vibrational spectroscopy. We present a first-principles protocol for the simulation of FSRS that integrates ab initio molecular dynamics with computational resonance Raman spectroscopy. Theoretical calculations can monitor the time-dependent evolution of specific vibrational modes and thus provide insight into the nature of the motion responsible for the experimental FSRS signal, and we apply this technique to study quaterthiophene derivatives. The S-1 state of two different quaterthiophene derivatives relaxes via inphase and out-of-phase stretching modes whose frequencies are coupled to the dihedral backbone angle, such that the spectral evolution reflects the excited-state relaxation toward a planar conformation. The simulated spectra aid in confirming the experimental assignment of the vibrational modes that are probed in the existing FSRS experiments on quaterthiophenes.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available