4.4 Article

Deep residual learning for neuroimaging: An application to predict progression to Alzheimer's disease

Journal

JOURNAL OF NEUROSCIENCE METHODS
Volume 339, Issue -, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.jneumeth.2020.108701

Keywords

Alzheimer's disease; MCI to AD progression; Deep learning; Residual neural networks

Funding

  1. NIH [2R01EB005846, P20GM103472, R01REB020407]
  2. NSF [1539067, IIS-1318759]
  3. National Natural Science Foundation of China [61703253]
  4. Natural Science Foundation of Shanxi Province in China [2016021077]
  5. Alzheimer's Disease Neuroimaging Initiative (ADNI) (National Institutes of Health) [U01 AG024904]
  6. DOD ADNI (Department of Defense) [W81XWH-12-2-0012]
  7. National Institute on Aging
  8. National Institute of Biomedical Imaging and Bioengineering
  9. AbbVie
  10. Alzheimer's Association
  11. Alzheimer's Drug Discovery Foundation
  12. Araclon Biotech
  13. BioClinica, Inc.
  14. Biogen
  15. Bristol-Myers Squibb Company
  16. CereSpir, Inc.
  17. Cogstate
  18. Eisai Inc.
  19. Elan Pharmaceuticals, Inc.
  20. Eli Lilly and Company
  21. EuroImmun
  22. F. Hoffmann-La Roche Ltd
  23. Genentech, Inc.
  24. Fujirebio
  25. GE Healthcare
  26. IXICO Ltd.
  27. Janssen Alzheimer Immunotherapy Research & Development, LLC.
  28. Johnson & Johnson Pharmaceutical Research & Development LLC.
  29. Lumosity
  30. Lundbeck
  31. Merck Co., Inc.
  32. Meso Scale Diagnostics, LLC.
  33. NeuroRx Research
  34. Neurotrack Technologies
  35. Novartis Pharmaceuticals Corporation
  36. Pfizer Inc.
  37. Piramal Imaging
  38. Servier
  39. Takeda Pharmaceutical Company
  40. Transition Therapeutics
  41. Canadian Institutes of Health Research

Ask authors/readers for more resources

Background: The unparalleled performance of deep learning approaches in generic image processing has motivated its extension to neuroimaging data. These approaches learn abstract neuroanatomical and functional brain alterations that could enable exceptional performance in classification of brain disorders, predicting disease progression, and localizing brain abnormalities. New Method: This work investigates the suitability of a modified form of deep residual neural networks (ResNet) for studying neuroimaging data in the specific application of predicting progression from mild cognitive impairment (MCI) to Alzheimer's disease (AD). Prediction was conducted first by training the deep models using MCI individuals only, followed by a domain transfer learning version that additionally trained on AD and controls. We also demonstrate a network occlusion based method to localize abnormalities. Results: The implemented framework captured non-linear features that successfully predicted AD progression and also conformed to the spectrum of various clinical scores. In a repeated cross-validated setup, the learnt predictive models showed highly similar peak activations that corresponded to previous AD reports. Comparison with existing methods: The implemented architecture achieved a significant performance improvement over the classical support vector machine and the stacked autoencoder frameworks (p < 0.005), numerically better than state-of-the-art performance using sMRI data alone ( > 7% than the second-best performing method) and within 1% of the state-of-the-art performance considering learning using multiple neuroimaging modalities as well. Conclusions: The explored frameworks reflected the high potential of deep learning architectures in learning subtle predictive features and utility in critical applications such as predicting and understanding disease progression.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available