4.6 Article

BCI for stroke rehabilitation: motor and beyond

Journal

JOURNAL OF NEURAL ENGINEERING
Volume 17, Issue 4, Pages -

Publisher

IOP Publishing Ltd
DOI: 10.1088/1741-2552/aba162

Keywords

brain-computer interface; motor; cognition; emotion; stroke rehabilitation; review

Ask authors/readers for more resources

Stroke is one of the leading causes of long-term disability among adults and contributes to major socio-economic burden globally. Stroke frequently results in multifaceted impairments including motor, cognitive and emotion deficits. In recent years, brain-computer interface (BCI)-based therapy has shown promising results for post-stroke motor rehabilitation. In spite of the success received by BCI-based interventions in the motor domain, non-motor impairments are yet to receive similar attention in research and clinical settings. Some preliminary encouraging results in post-stroke cognitive rehabilitation using BCI seem to suggest that it may also hold potential for treating non-motor deficits such as cognitive and emotion impairments. Moreover, past studies have shown an intricate relationship between motor, cognitive and emotion functions which might influence the overall post-stroke rehabilitation outcome. A number of studies highlight the inability of current treatment protocols to account for the implicit interplay between motor, cognitive and emotion functions. This indicates the necessity to explore an all-inclusive treatment plan targeting the synergistic influence of these standalone interventions. This approach may lead to better overall recovery than treating the individual deficits in isolation. In this paper, we review the recent advances in BCI-based post-stroke motor rehabilitation and highlight the potential for the use of BCI systems beyond the motor domain, in particular, in improving cognition and emotion of stroke patients. Building on the current results and findings of studies in individual domains, we next discuss the possibility of a holistic BCI system for motor, cognitive and affect rehabilitation which may synergistically promote restorative neuroplasticity. Such a system would provide an all-encompassing rehabilitation platform, leading to overarching clinical outcomes and transfer of these outcomes to a better quality of living. This is one of the first works to analyse the possibility of targeting cross-domain influence of post-stroke functional recovery enabled by BCI-based rehabilitation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available