4.7 Article

Hydrodynamic cavitation based advanced oxidation processes: Studies on specific effects of inorganic acids on the degradation effectiveness of organic pollutants

Journal

JOURNAL OF MOLECULAR LIQUIDS
Volume 307, Issue -, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.molliq.2020.113002

Keywords

Hydrodynamic cavitation; Sulfate radicals; Advanced oxidation processes (AOPs); Volatile organic compounds (VOCs); Hydroxyl radicals

Funding

  1. National Science Centre [UMO-2017/25/B/ST8/01364]

Ask authors/readers for more resources

The use of cavitation in advanced oxidation processes (AOPs) to treat acidic effluents and process water has become a promising trend in the area of environmental protection. The pH value of effluents - often acidified using an inorganic acid, is one of the key parameters of optimization process. However, in the majority of cases the effect of kind of inorganic acid on the effectiveness of degradation is not studied. The present study describes the results of investigations on the use of hydrodynamic cavitation (HC) for the treatment of a model effluent containing 20 organic compounds, representing various groups of industrial pollutants. The effluent was acidified using three different mineral acids. It was demonstrated that the kind of acid used strongly affects the effectiveness of radical processes of oxidation of organic contaminants as well as formation of harmful secondary pollutants. One of important examples is a risk of formation of p-nitrotolune. Sulfuric acid was the only chemical used for acidification which caused effective treatment with lack of formation of monitored type of secondary pollutants. The best treatment effectiveness - during a 6-hour cavitation process - in most cases much above 80% along with 90% TOC removal was obtained in the case of sulfuric acid. Nitric acid provided lower effectiveness (above 60% for most of the compounds). The worst performance are reported for hydrochloric acid - below 50% of degradation for most of the compounds. (C) 2020 The Authors. Published by Elsevier B.V.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available