4.7 Article

Superior anti-icing strategy by combined sustainable liquid repellence and electro/photo-responsive thermogenesis of oil/MWNT composite

Journal

JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY
Volume 49, Issue -, Pages 106-116

Publisher

JOURNAL MATER SCI TECHNOL
DOI: 10.1016/j.jmst.2020.02.022

Keywords

Anti-icing; De-icing; Icephobic; Soft conductor; Self-healing; Nanocomposite; Liquid repellence

Ask authors/readers for more resources

This paper introduces an effective anti-icing strategy that uses passive anti-icing property and active de-icing functions concurrently. These dual capabilities can alleviate the icing problem more effectively than either a passive or active function alone. The developed material is a slippery liquid-repellent elastic conductor (SLEC); it is an organogel that is composed of multi-walled carbon nanotubes, oil, and polydimethylsiloxane. The SLEC maintains passive water-droplet sliding ability even on wet surfaces that frequently occur in cold conditions (e.g., during condensation and defrosting), suppresses ice nucleation, and shows ice adhesion strength as low as similar to 20 kPa. The SLEC releases heat when it is subject to electrical or photonic stimulation, and can therefore it can prevent ice formation and melt ice that has already formed on a surface. This material has sustainable liquid repellence by syneresis and replenishment; this ability ensures long-lasting anti-icing property, and results in exceptional durability. This durability is stable against mechanical damage. The superior dual anti-icing capabilities together with the sustainable and stable liquid repellence should generate synergistic effects, and yield a powerful anti-icing tool that can broaden the range of icing applications. (C) 2020 Published by Elsevier Ltd on behalf of The editorial office of Journal of Materials Science & Technology.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available