4.5 Article

Double-layer absorbers based on hierarchical MXene composites for microwave absorption through optimal combination

Journal

JOURNAL OF MATERIALS RESEARCH
Volume 35, Issue 11, Pages 1481-1491

Publisher

CAMBRIDGE UNIV PRESS
DOI: 10.1557/jmr.2020.122

Keywords

MXene; hierarchical structure; double-layer absorber; microwave absorption property

Funding

  1. China Postdoctoral Science Foundation [2018M640775]
  2. National Natural Science Foundation of China [21905097]

Ask authors/readers for more resources

Double-layer absorbers have recently been extensively studied because single-layer absorbers can hardly meet the requirements of advanced absorbing materials. However, determining how to couple the matching and absorption layers remains a challenge. In the present work, we applied the hydrothermal method to prepare an ultrasmall Fe3O4 nanoparticle and a hierarchical MXene/Fe3O4 composite and then studied the microwave attenuation capabilities of single- and double-layer absorbers containing these two materials with different thicknesses. Absorbers with well-coupled layers showed improved absorption performance on account of the excellent impedance matching behavior of the Fe3O4 layer and the high microwave attenuation capability of the MXene/Fe3O4 layer. When the thickness of the matching layer filled with Fe3O4 was 0.1 mm and that of the absorption layer filled with MXene/Fe3O4 was 1.9 mm, a maximum reflection loss of -48.7 dB was achieved at 9.9 GHz. More importantly, when the thicknesses of the matching and absorption layers were 0.9 and 1.1 mm, respectively, the effective bandwidth was nearly 3.9 GHz. The double-layer absorbers with enhanced absorption properties may be regarded as a new generation of materials for electromagnetic wave absorption.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available