4.6 Article

Incorporating the Effects of Climate Change into Bridge Deterioration Modeling: The Case of Slab-on-Girder Highway Bridge Deck Designs across Canada

Journal

Publisher

ASCE-AMER SOC CIVIL ENGINEERS
DOI: 10.1061/(ASCE)MT.1943-5533.0003245

Keywords

Climate change; Adaptation; Bridge deck; Corrosion; Concrete

Funding

  1. Infrastructure Canada under the Climate Resilient Buildings and Core Public Infrastructure Project

Ask authors/readers for more resources

Climate change is expected to impact both the operational and structural performance of infrastructure such as buildings, roads, and bridges. However, infrastructure design guides widely rely on historical climate data, if any, for informing design requirements. The goal of this research was to explore a methodology for modeling bridge deck design against corrosion attack in a changing climate. Three deterioration stages were simulated to understand the time to deck failure. Corrosion initiation of reinforcing steel was considered by utilizing a deterministic diffusion-based model predicting the time to reinforcement corrosion initiation. Crack initiation and crack growth were also simulated using mechanistic approaches to illustrate the sensitivity of bridge deck deterioration and design service life to changes in bridge deck design and a changing climate across major cities in Canada. The findings indicate that a changing climate has the potential to significantly alter the service life of a bridge deck, but the effect is strongly dependent on the durability design of the bridge deck. It is recommended that bridge designers strive to utilize mechanistic-empirical models that incorporate high-resolution climate data as inputs for better understanding changes in deterioration as a consequence of a nonstationary climate.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available