4.7 Article

Biotransformation of dietary inorganic arsenic in a freshwater fish Carassius auratus and the unique association between arsenic dimethylation and oxidative damage

Journal

JOURNAL OF HAZARDOUS MATERIALS
Volume 391, Issue -, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.jhazmat.2020.122153

Keywords

Arsenic; Bioaccumulation; Biotransformation; Oxidative stress; Freshwater fish

Funding

  1. Special Fund for Agro-Scientific Research in the Public Interest of China [201503108]
  2. Science and Technology Project of Hunan Province [2017WK2091]
  3. Marie Sklodowska-Curie Individual Fellowship under the European Union's Horizon 2020 research program [750455]
  4. Marie Curie Actions (MSCA) [750455] Funding Source: Marie Curie Actions (MSCA)

Ask authors/readers for more resources

The metabolic process and toxicity mechanism of dietary inorganic arsenic (iAs) in freshwater fish remain unclear to date. The present study conducted two iAs [arsenate (As(V)) and arsenite (As(III))] dietary exposures in freshwater fish crucian carp (Carassius auratus). The fish were fed on As supplemented artificial diets at nominal concentrations of 50 and 100 mu g As(III) or As(V) g(-1) (dry weight) for 10 d and 20 d. We found that the liver, kidney, spleen, and intestine of fish accumulated more As in As(V) feeding group than that in As(III), while the total As levels in muscle were similar between As(V) and As(III) group at the end of exposure. Reduction of As(V) to As(III) and oxidation of As(III) to As(V) occurred in fish fed with As(V) and As(III), respectively, indicating that toxicity of iAs was likely elevated or reduced when iAs was absorbed by fish before entering into human body through diet. Biomethylation to monomethylarsonic acid and dimethylarsinic acid and transformation to arsenocholine and arsenobetaine were also found in the fish. The linear regression analysis showed a positive correlation between secondary methylation index and the malondialdehyde content in tissues, highlighting the vital role of arsenic dimethylation in the oxidative damages in fish.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available