4.7 Article

Hierarchical N-doped TiO2@Bi2WxMo1-xO6 core-shell nanofibers for boosting visible-light-driven photocatalytic and photoelectrochemical activities

Journal

JOURNAL OF HAZARDOUS MATERIALS
Volume 391, Issue -, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.jhazmat.2020.122249

Keywords

Core-shell nanofibers; Photocatalysis; Visible-light; Antibiotic; Electrospinning

Funding

  1. Basic Science Research Program through the National Research Foundation of Korea - Ministry of Science, ICT and Future Planning (MSIP), Republic of Korea [2019R1A2C1008257, 2014R1A5A1009799, 2018R1A2B2006094]

Ask authors/readers for more resources

Heterogeneous photocatalysis has been proven to be a promising approach to overcome the great challenges encountered with conventional technologies for environmental remediation. Herein, for the first time, a novel hierarchical architecture of nitrogen-doped TiO2@Bi2WxMo1-xO6, x = 0-1.0) was rationally designed and fabricated through an electrospinning route followed by a solvothermal process. The photocatalytic activity of the as-prepared samples was evaluated based on the degradation of tetracycline hydrochloride (TC) under visible-light irradiation. The results indicated that the molar fraction of W/Mo has a strong impact on the photocatalytic efficiency and photoelectrochemical performance of the N-T@BWMO composites. Compared to N-TiO2 and the binary composites, N-T@BWMO-0.25 exhibited outstanding photocatalytic activity and significant cycling stability. The enhanced photocatalytic activity can be synergistically linked to the excellent native adsorption, extended light-harvesting region, hierarchical structure, and strong interfacial interaction between N-TiO2 and BWMO, which can effectively prolong the lifetime of charge-carriers. Moreover, active species-trapping and electron paramagnetic resonance results confirmed that holes and superoxide radicals were the dominant active species responsible for TC removal. A possible photocatalytic mechanism underlying the degradation of TC by N-T@BWMO-0.25 is also proposed. We expect that our findings will provide new insights into the use of highly efficient core-shell heterostructure photocatalysts, with potential applications in environmental decontamination.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available