4.7 Article

Metal-free 2D/2D heterojunction of covalent triazine-based frameworks/graphitic carbon nitride with enhanced interfacial charge separation for highly efficient photocatalytic elimination of antibiotic pollutants

Journal

JOURNAL OF HAZARDOUS MATERIALS
Volume 391, Issue -, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.jhazmat.2020.122204

Keywords

CTFNS/CNNS heterojunction; Electrostatic self-assembly method; Intimate contact face; Simulated solar light photocatalysis; Sulfamethazine

Funding

  1. National Natural Science Foundation of China [51778295, 51678306, 51478223, 21976051]
  2. China Postdoctoral Science Foundation [2017T100372, 2016M590458, 2013M541677]

Ask authors/readers for more resources

A novel polymer-based 2D/2D heterojunction photocatalysts of covalent triazine-based frameworks/graphitic carbon nitride nanosheets (CTFNS/CNNS) heterojunction are successfully obtained by an electrostatic self-assembly method using amine-functionalized CNNS and carboxyl-rich CTFNS. Such large contact surface and appropriate interfacial contact between CNNS and CTFNS plays a critical role in transfer and separation of charge-carriers. The resulting CTFNS/CNNS heterojunction showed significantly enhanced photocatalytic activity under the irradiation of simulated solar light, which could decompose 10 ppm sulfamethazine (SMT) within 180 min with a high degradation efficiency of 95.8 %. Chloride ions can greatly promote the photocatalytic degradation of SMT due to the production of more radical species. O-center dot(2)- is the dominant active species for SMT decomposition over CTFNS/CNNS heterojunction. Moreover, the degradation intermediates of SMT were identified using high performance liquid chromatography-mass spectrometer and the degradation pathway was proposed. This study provides a new insight into the design of 2D/2D heterojunctions using carbon-based nanomaterials, which exhibits great potential in the degradation of sulfonamide antibiotics in wastewaters.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available