4.4 Article

Antimicrobial Resistance at Two US Cull Cow Processing Establishments

Journal

JOURNAL OF FOOD PROTECTION
Volume 83, Issue 12, Pages 2216-2228

Publisher

ELSEVIER
DOI: 10.4315/JFP-20-201

Keywords

Antimicrobial resistance; Beef processing; Cattle; Escherichia coli; Quantitative PCR; Salmonella

Funding

  1. U.S. Department of Agriculture (USDA), Agricultural Research Service National Program 108-Food Safety [3040-42000-018]
  2. Beef Checkoff

Ask authors/readers for more resources

Culled beef cows (cows that have reached the end of their productive life span in cow-calf operations) and culled dairy cows represent approximately 18% of the cattle harvested in the United States annually, but data on antimicrobial resistance (AMR) in these cull cattle are extremely limited. To address this data gap, colon contents were obtained from 180 culled conventional beef cows, 179 culled conventional dairy cows, and 176 culled organic dairy cows (produced without using antimicrobials). Sponge samples were also collected from 181 conventional beef, 173 conventional dairy, and 180 organic dairy cow carcasses. These samples were obtained on 6 days (3 days each at two beef harvest and processing establishments). At one establishment, 30 samples of beef manufacturing trimmings from conventional cows and 30 trim samples from organic dairy cows were acquired. All 1,129 samples were cultured for Escherichia coli, tetracycline-resistant (TETr) E. coli, third-generation cephalosporin-resistant (3GC(r)) E. coli, Salmonella, and 3GC(r) Salmonella. Metagenomic DNA was isolated from 535 colon content samples, and quantitative PCR assays were performed to assess the abundances of the following 10 antimicrobial resistance genes: aac(6')-Ie-aph(2)-Ia, aadA1, bla(CMY-2), bla(CTX-M), bla(KPC-2), erm(B), mecA, tet(A), tet(B), and tet(M). For colon contents, only TETr E. coli (P < 0.01), 3GC(r) E. coli (P < 0.01), and erm(B) (P = 0.03) levels were higher in conventional than in organic cows. Sampling day also significantly affected (P < 0.01) these levels. Production system did not affect the levels of any measured AMR on carcasses or trim. The human health impact of the few significant AMR differences could not be determined due to the lack of standards for normal, background, safe, or basal values. Study results provide key heretofore unavailable data that may inform quantitative microbial risk assessments to address these gaps. HIGHLIGHTS Some AMR levels were higher in conventional than in organic cow colon contents. Carcass AMR levels did not differ between production systems. Trim AMR levels did not differ between production systems.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available