4.4 Article

Investigation on the Energy Exchange Characteristics of the Regenerative Flow Pump in an Automobile Fuel System

Journal

Publisher

ASME
DOI: 10.1115/1.4047803

Keywords

pressure growth; longitudinal vortex; turbulent dissipation; energy exchange mechanism

Funding

  1. National Natural Science Foundation of China [51706198, 51839010, 10.13039/501100001809]

Ask authors/readers for more resources

The flow inside the regenerative flow pump (RFP) is quite complex. This study investigated four pump models with various geometrical dimensions to explore the energy exchange characteristics. A computational fluids dynamics (CFD) simulation and the experiment were carried out. The results illustrate that the pressure growth mode in the impeller is consistent with the channels, which confirms the circulation flow existing in the pump. Furthermore, it is found that the circulation flow that features with longitudinal vortexes can be evaluated quantitatively by combining the analyses of the dimensionless axial distance, circulation number and entropy production. A smaller axial distance indicates that more flow is involved in the circulation and the intensity of the longitudinal vortex is enhanced; a large circulation number accompanied by a small dissipation loss could result in a satisfactory exchange flow. Therefore, the largest circulation number, least amount of dissipation, and shortest distance lead to the highest head and efficiency in the model with V-shaped blades and an increased impeller height. This work establishes a deeper understanding of the energy exchange mechanism and could serve as a reference for the geometrical design and performance reinforcement of RFP.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available