4.3 Article

Maximum-Entropy Based Estimates of Stress and Strain in Thermoelastic Random Heterogeneous Materials

Journal

JOURNAL OF ELASTICITY
Volume 141, Issue 2, Pages 321-348

Publisher

SPRINGER
DOI: 10.1007/s10659-020-09786-5

Keywords

Maximum entropy method; Linear thermoelasticity; Heterogeneous materials; Homogenisation; Statistical second moments

Funding

  1. Projekt DEAL
  2. German Research Foundation (DFG) [SPP2013, BO 1466/14-1]

Ask authors/readers for more resources

Mean-field methods are a common procedure for characterizing random heterogeneous materials. However, they typically provide only mean stresses and strains, which do not always allow predictions of failure in the phases since exact localization of these stresses and strains requires exact microscopic knowledge of the microstructures involved, which is generally not available. In this work, the maximum entropy method pioneered by Kreher and Pompe (Internal Stresses in Heterogeneous Solids, Physical Research, vol. 9,1989) is used for estimating one-point probability distributions of local stresses and strains for various classes of materials without requiring microstructural information beyond the volume fractions. This approach yields analytical formulae for mean values and variances of stresses or strains of general heterogeneous linear thermoelastic materials as well as various special cases of this material class. Of these, the formulae for discrete-phase materials and the formulae for polycrystals in terms of their orientation distribution functions are novel. To illustrate the theory, a parametric study based on Al-Al(2)O(3)composites is performed. Polycrystalline copper is considered as an additional example. Through comparison with full-field simulations, the method is found to be particularly suited for polycrystals and materials with elastic contrasts of up to 5. We see that, for increasing contrast, the dependence of our estimates on the particular microstructures is increasing, as well.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available