4.6 Article

Deformation of the gravitational wave spectrum by density perturbations

Journal

Publisher

IOP Publishing Ltd
DOI: 10.1088/1475-7516/2020/06/046

Keywords

gravitational waves / theory; integrated Sachs-Wolfe effect; primordial gravitational waves (theory); CMBR theory

Funding

  1. JSPS [201960698]
  2. Deutsche Forschungsgemeinschaft under Germany's Excellence Strategy [EXC 2121, 390833306]

Ask authors/readers for more resources

We study the effect of primordial scalar curvature perturbations on the propagation of gravitational waves over cosmic distances. We point out that such curvature perturbations deform the isotropic spectrum of any stochastic background of gravitational waves of primordial origin through the (integrated) Sachs-Wolfe effect. Computing the changes in the amplitude and frequency of the propagating gravitational wave induced at linear order by scalar curvature perturbations, we show that the resulting deformation of each frequency bin of the gravitational wave spectrum is described by a linearly biased Gaussian with the variance sigma(2) similar or equal to integral d lnk Delta(2)(R), where Delta(2)(R)(k) denotes the amplitude of the primordial curvature perturbations. The linear bias encodes the correlations between the changes induced in the frequency and amplitude of the gravitational waves. Taking into account the latest bounds on Delta(2)(R) from primordial black hole and gravitational wave searches, we demonstrate that the resulting O(sigma) deformation can be significant for extremely peaked gravitational wave spectra. We further provide an order of magnitude estimate for broad spectra, for which the net distortion is O(sigma(2)).

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available