4.7 Article

Efficient exfoliation of UV-curable, high-quality graphene from graphite in common low-boiling-point organic solvents with a designer hyperbranched polyethylene copolymer and their applications in electrothermal heaters

Journal

JOURNAL OF COLLOID AND INTERFACE SCIENCE
Volume 569, Issue -, Pages 114-127

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.jcis.2020.02.068

Keywords

UV-curable graphene; Liquid-phase exfoliation; Hyperbranched polyethylene copolymer; Low-boiling-point organic solvents; Electrothermal heaters

Funding

  1. National Natural Science Foundation of China [21474091, 51707175]
  2. Natural Science Foundation of Zhejiang Province of China [LY18B040005, LQ16E030009]

Ask authors/readers for more resources

use of stabilizer with designer structures can effectively promote graphite exfoliation in common solvents to render functionalized graphene desirable for their various applications. Herein, a hyperbranched polyethylene copolymer, HBPE@Py@Acryl, simultaneously bearing multiple pyrene terminal groups and pendant acryloyl moieties has been successfully synthesized from ethylene with a Pd-diimine catalyst based on unique chain walking mechanism. The unique structural design of the HBPE@Py@Acryl makes it capable of effectively promote graphite exfoliation in a series of common, low-boiling-point organic solvents, e.g. CHCl3, to render stable graphene dispersions with concentrations effectively adjustable by changing feed concentrations of graphite and polymer or sonication time. Meanwhile, it can be irreversibly adsorbed on the exfoliated graphene surface based on the p-p interactions between them to concurrently render acryloyl-functionalized graphene free of structural defects, with majority (92.7%) of them having a thickness of 2-3 layers. This allows us to obtain graphene electrothermal films simply by filtration and UV irradiation, which exhibit outstanding stability in use. The action mechanism of the HBPE@Py@Acryl as stabilizer for promoting graphite exfoliation and the role of UV irradiation on improving the stability in use of resulting graphene films have been elucidated. (C) 2020 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available