4.6 Article

Logistic regression was as good as machine learning for predicting major chronic diseases

Journal

JOURNAL OF CLINICAL EPIDEMIOLOGY
Volume 122, Issue -, Pages 56-69

Publisher

ELSEVIER SCIENCE INC
DOI: 10.1016/j.jclinepi.2020.03.002

Keywords

Machine learning; Logistic regression; Prognostic modeling; Chronic diseases; Interaction; Nonlinearity

Funding

  1. National Medical Research Council [DYNAMO -NMRC/OFLCG/001/2017]

Ask authors/readers for more resources

Objective: To evaluate the performance of machine learning (ML) algorithms and to compare them with logistic regression for the prediction of risk of cardiovascular diseases (CVDs), chronic kidney disease (CKD), diabetes (DM), and hypertension (HTN) and in a prospective cohort study using simple clinical predictors. Study Design and Setting: We conducted analyses in a population-based cohort study in Asian adults (n = 6,762). Five different ML models were considered-single-hidden-layer neural network, support vector machine, random forest, gradient boosting machine, and k-nearest neighbor-and were compared with standard logistic regression. Results: The incidences at 6 years of CVD, CKD, DM, and HTN cases were 4.0%, 7.0%, 9.2%, and 34.6%, respectively. Logistic regression reached the highest area under the receiver operating characteristic curve for CKD (0.905 [0.88, 0.93]) and DM (0.768 [0.73, 0.81]) predictions. For CVD and HTN, the best models were neural network (0.753 [0.70, 0.81]) and support vector machine (0.780 [0.747, 0.812]), respectively. However, the differences with logistic regression were small (less than 1%) and nonsignificant. Logistic regression, gradient boosting machine, and neural network were systematically ranked among the best models. Conclusion: Logistic regression yields as good performance as ML models to predict the risk of major chronic diseases with low incidence and simple clinical predictors. (C) 2020 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available